Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

पॉजि़ट्रान उत्सर्जन टोमोग्राफी

Подписчиков: 0, рейтинг: 0
एक आम पॉज़िट्रॉन उत्सर्जन टोमोग्राफी (PET) सुविधा की छवि
PET/CT-सिस्टम 16-स्लाइस CT के साथ; छत पर लगा हुआ उपकरण CT विपरीत एजेंट के लिए एक इंजेक्शन पंप है

पॉज़िट्रॉन उत्सर्जन टोमोग्राफी (पीईटी (PET)) एक ऐसी परमाणु चिकित्सा इमेजिंग तकनीक है जो शरीर की कार्यात्मक प्रक्रियाओं की त्रि-आयामी छवि या चित्र उत्पन्न करती है। यह प्रणाली एक पॉज़िट्रॉन-उत्सर्जित रेडिओन्युक्लिआइड (अनुरेखक) द्वारा अप्रत्यक्ष रूप से उत्सर्जित गामा किरणों के जोड़े का पता लगाती है, जिसे शरीर में एक जैविक रूप से सक्रिय अणु पर प्रवेश कराया जाता है। इसके बाद शरीर के भीतर 3-आयामी या 4-आयामी (चौथा आयाम समय है) स्थान में अनुरेखक संकेन्द्रण के चित्रों को कंप्यूटर विश्लेषण द्वारा पुनर्निर्मित किया जाता है। आधुनिक स्कैनरों में, यह पुनर्निर्माण प्रायः मरीज पर किए गए सिटी एक्स-रे (CT X-ray) की सहायता से उसी सत्र के दौरान, उसी मशीन में किया जाता है।

यदि PET के किए चुना गया जैविक रूप से सक्रिय अणु एक ग्लूकोज सम्बंधी FDG है, तब अनुरेखक की संकेन्द्रण की छवि, स्थानिक ग्लूकोज़ उद्ग्रहण के रूप में ऊतक चयापचय गतिविधि प्रदान करती है। हालांकि इस अनुरेखक का उपयोग सबसे आम प्रकार के PET स्कैन को परिणामित करता है, PET में अन्य अनुरेखक अणुओं के उपयोग से कई अन्य प्रकार के आवश्यक अणुओं के ऊतक संकेन्द्रण की छवि ली जाती है।

विवरण

एक PET स्कैनर के रिंग और एक डिटेक्टर ब्लॉक का योजनाबद्ध दृश्य

प्रचालन

इस स्कैन को करने के लिए, एक अल्पकालिक रेडियोधर्मी अनुरेखक आइसोटोप को सजीव वस्तु में इंजेक्शन के माध्यम से डाला जाता है (आमतौर पर रक्त संचार में)। अनुरेखक को एक जैविक रूप से सक्रिय अणु में रासायनिक रूप से शामिल किया जाता है। एक अवधि तक प्रतीक्षा करनी पड़ती है जब तक कि सक्रिय अणु लक्षित ऊतकों में संकेन्द्रित नहीं हो जाता; इसके बाद शोध विषय या रोगी को छवि खींचने वाले स्कैनर में रखा जाता है। इस उद्देश्य पूर्ति के लिए आम तौर पर जिस अणु का सबसे अधिक इस्तेमाल किया जाता है वह है फ्लोरोडीऑक्सीग्लूकोज़ (FDG) है, एक चीनी जिसके लिए प्रतीक्षा अवधि आम तौर पर एक घंटे की होती है। स्कैन के दौरान जैसे-जैसे अनुरेखक का क्षय होता है ऊतक संकेन्द्रण का एक रिकार्ड बनाया जाता है।

एक PET अधिग्रहण प्रक्रिया की विवरणिका

जैसे-जैसे रेडियोधर्मी-आइसोटोप, पॉज़िट्रॉन उत्सर्जन क्षय से गुज़रता है (जिसे सकारात्मक बीटा क्षय के नाम से भी जाना जाता है), वह एक पॉज़िट्रॉन छोड़ता है, जो विपरीत चार्ज के साथ इलेक्ट्रॉन का एक प्रतिरोधी-कण होता है। कुछ मिलीमीटर तक आगे बढ़ने के बाद उस पॉज़िट्रॉन का सामना एक इलेक्ट्रॉन के साथ होता है। इस भिड़ंत के कारण दोनों का ही खात्मा हो जाता है, जिससे विपरीत दिशाओं में चलने वाले एक जोड़ी विनाशक गामा फोटोन उत्पादित होते हैं। इनकी पहचान उस वक्त होती है जब वे स्कैनिंग उपकरण में चमकते हैं, उनमें से रौशनी फूट पड़ती है जो फोटोमल्टीप्लायर ट्यूबों या सिलिकॉन एवेलांच फोटोडायोड्स (Si APD) द्वारा पहचाना जाता है। यह तकनीक लगभग विपरीत दिशा में बढ़ते हुए फ़ोटोन जोड़ी के समकालिक या संपाती खोज पर निर्भर करती है (एक बड़े पैमाने पर जमावड़े के केंद्र में यह ठीक विपरीत दिशा में चलता है, लेकिन इस स्कैनर में ऐसा कोई तरीका नहीं है जिससे इसका पता लगाया जा सके और इसीलिए इसमें मामूली दिशा-त्रुटी के प्रति एक अन्तः निर्मित सहिष्णुता है)। जो फोटोन अस्थायी "जोड़ों" में नहीं आते हैं (जैसे कुछ नैनोसेकेंड की समय सीमा के भीतर) उनकी उपेक्षा की जाती है।

पॉज़िट्रॉन विनाशक घटना का स्थानीयकरण

इलेक्ट्रॉन-पॉज़िट्रॉन क्षय के सबसे महत्वपूर्ण अंश के फलस्वरूप, 511 keV गामा फोटोन एक दूसरे से लगभग 180 डिग्री की ओर उत्सर्जित होते हैं; अतः संयोग की एक सीधी रेखा के लगे हुए उनके स्रोत को स्थानीयकृत करना संभव है (जिसे औपचारिक रूप से प्रतिक्रिया की रेखा (लाइन ऑफ़ रेस्पोंस) या LOR कहा जाता है)। वास्तविक उपयोग में LOR की एक परिमित चौड़ाई होती है क्योंकि उत्सर्जित फोटोन की दूरी ठीक-ठीक 180 डिग्री ही नहीं होती है। यदि डिटेक्टरों के हल करने की अवधि 10 नैनोसेकेंड के बजाए 500 पिकोसेकेंड से कम है, तब इस परिणाम का एक तार के खंड में स्थानीयकरण सम्भव है, जिसकी लंबाई डिटेक्टर के समय संकल्प द्वारा निर्धारित की जाती है। जैसे जैसे समय संकल्प में सुधार होता है, छवि की संकेतन से शोर के अनुपात (SNR) में सुधार होता जाता है, जिससे कम ही घटनाओं को छवि की वही गुणवत्ता प्राप्त करने की आवश्यकता होती है। यह तकनीक अभी आम नहीं है, लेकिन यह कुछ नई प्रणालियों में उपलब्ध है।

संयोग सांख्यिकी के उपयोग से छवि पुनर्निर्माण

आम तौर पर, कंप्युटेड टोमोग्राफी(CT) के पुनर्निर्माण और एकल फोटोन उत्सर्जन कंप्युटेड टोमोग्राफी (SPECT) डेटा के समान ही एक तकनीक उपयोग की जाती है, हालांकि जो डेटा सेट PET में एकत्रित किया जाता है वह CT के मुकाबले बहुत खराब होता है, इसलिए पुनर्निर्माण तकनीक मुश्किल हो जाती है (PET का छवि पुनर्निर्माण देखें).

दसियों हजारों संयोग घटनाओं से एकत्रित आंकड़ों का उपयोग करके, कई LOR के लगे ऊतक के एक पार्सल की कुल गतिविधि के लिए युगपत समीकरणों के एक सेट को कई तकनीकों द्वारा हल किया जा सकता है और इस प्रकार पार्सल या ऊतक के टुकड़ों (जिसे वोक्सेल भी कहा जाता है) की अवस्थिति के कार्य के रूप में विकिरणशीलता के मानचित्र का निर्माण किया जा सकता है। परिणामस्वरूप प्राप्त मानचित्र, उन ऊतकों को दर्शाता है जिसमें आणविक जांच संकेन्द्रित हो चुकी है और रोगी के उपचार और निदान के संदर्भ में एक परमाणु चिकित्सा चिकित्सक या विकिरण चिकित्सक द्वारा विवेचना की जा सकती है।

सम्पूर्ण शरीर का PET/CT सम्मिश्रण छवि
एक मस्तिष्क PET/MRI सम्मिश्रण छवि

सीटी (CT) और एमआरआई (MRI) के साथ पीईटी (PET) का संयोजन

PET स्कैन को चुंबकीय अनुनाद इमेजिंग (एमआरआई) स्कैन के साथ-साथ अध्ययन किया जाता है, यह संयोजन ("सह-पंजीकरण") शारीरिक और चयापचय, दोनों जानकारी प्रदान करता है, (यानी, संरचना क्या है और वह जैव-रासायनिक आधार पर क्या कर रही है)। क्योंकि PET इमेजिंग CT जैसे संरचनात्मक इमेजिंग के साथ मिलकर सबसे अधिक उपयोगी साबित होती है, आधुनिक PET स्कैनर अब एकीकृत उच्च तकनीक मल्टी - डिटेक्टर-रो CT स्कैनर के साथ उपलब्ध हैं। क्योंकि यह दोनों स्कैन एक ही सत्र के दौरान तत्काल अनुक्रम में किया जा सकता है, दोनों स्कैनों के बीच मरीज़ को अपनी स्थिति बदलने की जरूरत नहीं पड़ती, छवियों के दो सेट विधि पूर्वक दर्ज हो जाते हैं, ताकि PET इमेजिंग में दिखाए गए विकृतियों वाले क्षेत्र को अधिक विषमता से शारीरिक रचना के साथ सहसंबद्ध करके CT छवियों में देखा जा सकता है। यह शारीरिक रचना में अधिक विविधता वाले चलायमान अंगों या संरचनाओं की छवि का विस्तृत दृश्य दिखाने में उपयोगी है, जो आम तौर पर मस्तिष्क के बाहर की होती है।

PET-MRI : अप्रैल 2009 में जुलीच (Jülich) इंस्टीटयूट ऑफ़ न्यूरोसाइंसेस एंड बायोफिज़िक्स में विश्व के सबसे विशाल PET/MRI उपकरण ने कार्य करना शुरू किया: एक 9.4-टेस्ला चुंबकीय अनुनाद टोमोग्राफ़ (MRT)) जो एक पॉज़िट्रॉन उत्सर्जन टोमोग्राफ़ (PET) के साथ संयुक्त था। वर्तमान में, इन उच्च चुंबकीय क्षेत्र की ताकत से केवल सिर और दिमाग के चित्र लिए जा सकते हैं।

रेडिओन्युक्लिआइड

PET स्कैनिंग में प्रयोग किए जाने वाले रेडिओन्युक्लिआइड आम तौर पर अर्ध-जीवन वाले आइसोटोप हैं, जैसे कार्बन-11 (~20 मिनट), नाइट्रोजन-13 (~10 मिनट), ऑक्सीजन-15 (~2 मिनट) और फ्लोरीन-18 (~110 मिनट)। ये रेडिओन्युक्लिआइड या तो उन यौगिकों में शामिल होते हैं जिनका प्रयोग सामान्य रूप से शरीर करता है जैसे ग्लूकोज़ (ग्लूकोज़ सदृश अन्य), जल या अमोनिया, या फिर उन अणुओं में शामिल होते हैं जो रिसेप्टर या दवा की कार्रवाई की अन्य साइटों से आबद्ध होते हैं। इस तरह के लेबलकृत यौगिक, रेडियोअनुरेखक के रूप में जाने जाते हैं। यह पहचानना महत्वपूर्ण है कि PET तकनीक का प्रयोग जीवित मानव में (और कई अन्य प्रजातियों में भी) किसी भी यौगिक के जीवविज्ञानिक पथ की पहचान करने के लिए किया जा सकता है, बशर्ते उसे PET आइसोटोप से रेडियोलेबल किया गया हो। इस प्रकार वे विशिष्ट प्रक्रियाएं जिन्हें PET के साथ जांचा जा सकता है, लगभग असीम हैं और नए लक्ष्यित अणुओं और प्रक्रियाओं के लिए रेडियोअनुरेखक को सभी समय संश्लेषित किया जाता है; इस लेख के लिखने तक दर्जनों का उपयोग नैदानिक रूप से किया जा रहा है और सैकड़ों का अनुसंधान में. वर्तमान में, हालांकि, अब तक नैदानिक PET स्कैनिंग में आमतौर पर सबसे अधिक इस्तेमाल किया जाने वाला न्युक्लिड है FDG के रूप में फ्लोरीन-18.

अधिकांश रेडियोआइसोटोप के अर्ध-जीवन के कारण, रेडियोअनुरेखक का उत्पादन उन एक साइक्लोट्रॉन और रेडियोरसायन प्रयोगशाला के उपयोग से किया जाना चाहिए जो PET इमेजिंग सुविधा के निकट हैं। फ्लोरीन-18 का अर्ध-जीवन इतना लंबा होता है कि फ्लोरीन-18 लेबल वाले रेडियोअनुरेखक को साईट से दूरस्थ स्थान पर व्यावसायिक रूप से निर्मित किया जा सकता है।

सीमाएं

रोगी को विकिरण खुराक की न्यूनता, अल्पजीवी रेडिओन्युक्लिआइड के उपयोग की एक आकर्षक विशेषता है। नैदानिक तकनीक के रूप में इसकी स्थापित भूमिका के अलावा, चिकित्सा के प्रति प्रतिक्रिया का आकलन करने की एक पद्धति के रूप में PET की एक विस्तृत भूमिका है, विशेष रूप से, कैंसर चिकित्सा, जहां परीक्षण विकिरण से होने वाले जोखिम की तुलना में रोग की प्रगति के बारे में अज्ञानता से रोगी के लिए कहीं अधिक खतरा होता है।

PET का व्यापक उपयोग करने से जो बात बाधा उत्पन्न करती है वह है PET स्कैनिंग के लिए अल्प-जीवी रेडिओन्युक्लिआइड निर्माण करने हेतु आवश्यक साइक्लोट्रोन की उच्च लागत और रेडियोदवा का उत्पदान करने के लिए विशेष रूप से अनुकूलित ऑन-साईट रसायन संश्लेषण उपकरण की ज़रूरत. कुछ ही अस्पताल और विश्वविद्यालय ऐसी व्यवस्था बनाए रखने में सक्षम हैं और अधिकांश नैदानिक PET, रेडियोअनुरेखक के तृतीय-पक्ष के आपूर्तिकर्ताओं द्वारा समर्थित हैं जो कई साइटों को एक साथ आपूर्ति कर सकते हैं। यह सीमा, नैदानिक PET को मुख्यतः उन अनुरेखक के उपयोग तक सीमित कर देती है जो फ्लोरीन-18 से लेबल हैं, जिनके पास 110 मिनट का अर्ध-जीवन है और उन्हें उपयोग से पहले एक उचित दूरी तक भेजा जा सकता है, या फिर रूबिडीयाम-82 जिसे एक पोर्टेबल जनरेटर में बनाया जा सकता है और इसका उपयोग मिओकार्डिअल द्रवनिवेशन अध्ययन के लिए किया जाता है। फिर भी, हाल के कुछ वर्षों में एकीकृत परिरक्षण और गर्म प्रयोगशालाओं वाले ऑन-साइट साइक्लोट्रोन को PET इकाइयों के साथ दूरदराज़ के अस्पतालों में भेजा जाने लगा है। लघु ऑन-साइट साइक्लोट्रॉन की उपस्थिति के भविष्य में विस्तृत होने की आशा है क्योंकि दूरस्थ PET मशीनों तक आइसोटोप को भेजने में आने वाली उच्च लागत की प्रतिक्रिया स्वरूप साइक्लोट्रॉन घटते जा रहे हैं।

चूंकि फ्लोरीन-18 का अर्ध-जीवन करीब दो घंटे का होता है, इस रेडियोन्युक्लिड को धारण करने वाली एक रेडियोदवा की खुराक, कार्य दिवस के दौरान क्षय के कई अर्ध-जीवन से गुज़रेगी. इससे शेष खुराक का लगातार पुनार्मापांकन (प्रति इकाई परिमाण पर गतिविधि का निर्धारण) और मरीज अनुसूचन के सम्बन्ध में सावधानीपूर्ण योजना आवश्यक हो जाती है।

छवि पुनर्निर्माण

PET स्कैनर द्वारा एकत्रित अपरिष्कृत आंकड़े 'संयोगी घटनाओं' की एक सूची होती है जो एक जोड़े डिटेक्टरों के द्वारा लगभग एक साथ हुए विनाशक फोटोनों के पहचान का प्रतिनिधित्व करती है। प्रत्येक संयोगी घटना, ऐसे दो डिटेक्टरों जिनके साथ पॉज़िट्रॉन उत्सर्जन हुआ, को जोड़ने वाली एक रेखा का प्रतिनिधित्व करती है। उच्च समय रेज़ल्युशन वाली आधुनिक प्रणालियां भी एक तकनीक ("टाइम-ऑफ़-फ्लाईट" नामक) का उपयोग करती हैं जिसमें वे और अधिक सटीकता पूर्वक दोनों फोटोन के पहचान के बीच के समय को निर्धारित करती है और इस प्रकार वह पूर्व उल्लेखित रेखा को लगभग 10 सेमी तक कम करने में सक्षम होती है।

संयोगी घटनाओं को सीनोग्राम नामक प्रक्षेपण छवियों में बांटा जा सकता है। सीनोंग्राम को प्रत्येक दृश्य और झुकाव के कोण को देखते हुए वर्गीकृत किया जा सकता है, बाद वाले को 3D केस छवि में. सीनोग्राम छवियां, कंप्युटेड टोमोग्राफी (CT) स्कैनर द्वारा खींचे गए प्रक्षेपण के अनुरूप होती हैं और ठीक ऊसी तरीके से पुनर्निर्मित की जा सकती है। हालांकि, आंकड़ों की सांख्यिकी, संचरण टोमोग्राफी के माध्यम से प्राप्त आंकड़ों से बहुत बदतर होती है। एक सामान्य PET डेटा सेट में पूरे अधिग्रहण के लिए लाखों गिनती होती हैं, जबकि सीटी (CT) में कुछ अरब तक गिना जाता सकता है। वैसे, CT डेटा के मुकाबले, PET डेटा बिखराव और अनियमित घटनाओं से बहुत अधिक नाटकीय रूप से पीड़ित रहते हैं।

प्रायोगिकता में, डेटा का काफी मात्रा में पूर्व-प्रक्रमण आवश्यक होता है जैसे - अनियमित संयोगों का सुधार, बिखरे फोटोनों का अनुमान और घटाव, डिटेक्टर के रुके हुए समय का सुधार (एक फोटोन के पहचान के पश्चात, डिटेक्टर का फिर ठंडा होना आवश्यक होता है) और डिटेक्टर की संवेदनशीलता में सुधार (अन्तर्निहित डिटेक्टर की संवेदनशीलता और घटना के कोण के कारण संवेदनशीलता में बदलाव, दोनों के लिए होती है)।

वापस छनित प्रक्षेपण (फिल्टर्ड बैक प्रोजेक्शन) (FBP) का प्रयोग, प्रक्षेपण से छवियों का पुनर्निर्माण करने के लिए अक्सर किया जाता है। इस एल्गोरिथ्म में सरल होने का फायदा है, साथ ही इसमें कंप्यूटिंग संसाधनों की कम ही आवश्यकता है। हालांकि, पुनर्निर्मित छवि में अपरिष्कृत डेटा में शॉट शोर काफी होता है और उच्च अनुरेखक उद्ग्रहण के क्षेत्र, छवियों के चारों ओर लकीर बनाते हैं।

आवर्ती एक्सपेक्टेशन-मैक्सीमाइज़ेशन एल्गोरिथ्म अब पुनर्निर्माण के पसंदीदा तरीके हैं। इसमें यह लाभ है कि एक बेहतर शोर रूपरेखा और लकीर त्रुटियों के प्रति प्रतिरोध है जो FBP में नहीं है, लेकिन हानि यह है कि इसमें उच्च कंप्यूटर संसाधन की आवश्यकता होती है।

क्षीणन सुधार: चूंकि भिन्न LOR के लिए ऊतक की विभिन्न मोटाई को पार करना जरुरी होता है, फोटोनों को अलग तरीके से तनूकृत किया जाता है। नतीजतन, शरीर की गहराई में संरचनाएं मिथ्या रूप में निम्न अनुरेखक उद्ग्रहण के साथ पुनर्निर्मित होती हैं। समकालीन स्कैनर, एकीकृत एक्सरे CT उपकरण का उपयोग करते हुए क्षीणन का अनुमान लगा सकते हैं, हालांकि पहले के उपकरण, गामा किरण (पॉज़िट्रॉन उत्सर्जित) स्रोत और PET डिटेक्टरों का उपयोग करते हुए CT का अपरिष्कृत रूप पेश करते थे।

जबकि क्षीणन-परिष्कृत छवियां आम तौर पर अधिक सटीक प्रदर्शन होती हैं, खुद सुधार प्रक्रिया ही महत्वपूर्ण त्रुटियों के प्रति संवेदनशील है। नतीजतन, संशोधित और असंशोधित, दोनों ही छवियों को हमेशा पुनर्निर्मित किया जाता है और एक साथ पढ़ा जाता है।

2D/3D पुनर्निर्माण : प्रारम्भिक PET स्कैनर में संसूचक का केवल एकल रिंग होता था, इसीलिए डाटा का अभिग्रहण और अनुवर्ती पुनर्निर्माण एकल अनुप्रस्थ प्लेन को प्रतिबंधित करता था। अधिक आधुनिक स्कैनर में अब कई रिंगों को शामिल किया गया है और अनिवार्य रूप से संसूचको की एक सिलेंडर बनाई गई है।

उस प्रकार के एक स्कैनर से डाटा के पुनर्निर्माण करने के दो दृष्टिकोण हैं: 1) प्रत्येक रिंग को एक अलग इकाई के रूप में समझें, ताकी रिंग के भीतर संयोग को संसूचित कर सके, प्रत्येक रिंग के छवि को व्यक्तिगत रूप से पुनर्निर्माण किया जा सकता है (2D पुनर्निर्माण), या 2) रिंग के मध्य और साथ ही रिंग के भीतर, संयोग को संसूचित करने की अनुमति दें, उसके बाद सम्पूर्ण मात्रा का एक साथ पुनर्निर्माण करें (3D)।

3 डी तकनीक में बेहतर संवेदनशीलता होती है (क्योंकि अधिक संयोग का पता चलता है और उपयोग किया जाता है) और इसलिए कम शोर होता है, लेकिन यह तितर-बितर और यादृच्छिक संयोग के प्रभावों के प्रति अधिक संवेदनशील है, साथ ही साथ इसमें अधिक कम्प्यूटर संसाधनों की आवश्यकता होती है। उप-नेनोसेकेंड टाइम रेज़ल्युशन संसूचक का प्रार्दुभाव, बेहतर यादृच्छिक संयोग अस्वीकृति प्रदान करता है और इस प्रकार 3D छवि पुनर्निर्माण का समर्थन करता है।

इतिहास

1950 के दशक के उत्तरार्ध में उत्सर्जन और प्रसारण टोमोग्राफी की अवधारणा की शुरूआत पहली बार डेविड ई. कुहल और रॉय एडवर्ड्स द्वारा हुई। बाद में उनके काम पर आधारित पेंसिल्वेनिया विश्वविद्यालय में डिजाइन और कई टोमोग्राफिक उपकरण के निर्माण का कार्य हुआ। टोमोग्राफिक इमेजिंग तकनीक के बाद के विकास का कार्य माइकल टेर-पोगोसियन, माइकल ई. फेल्प्स और अन्यों के द्वारा वाशिंगटन यूनिवर्सिटी स्कूल ऑफ़ मेडिसिन में हुआ।

1950 के दशक के पूर्वार्ध में मैसाचुसेट्स जनरल अस्पताल में गॉर्डन ब्राऊनेल, चार्ल्स बर्नहैम और उनके साथियों द्वारा किए गए कार्य ने PET प्रौद्योगिकी के विकास के लिए महत्वपूर्ण योगदान दिया और पहली बार चिकित्सा इमेजिंग के लिए विनाशक विकिरण का प्रदर्शन किया। उनके द्वारा किए गए नवप्रवर्तन, जिनमें प्रकाश पाइपों का उपयोग और अनुमापी विश्लेषण शामिल थे PET इमेजिंग के परिनियोजन में महत्वपूर्ण साबित हुए.

1970 के दशक में, ब्रूकहेवन राष्ट्रीय प्रयोगशाला में तत्सुओं इडो 18F-FDG के संश्लेषण का वर्णन करने वाले पहले व्यक्ति थे, जो सबसे सामान्य रूप से इस्तेमाल होने वाला ET स्कैनिंग इसोटोप करियर है। अगस्त 1976 में पेंसिल्वेनिया विश्वविद्यालय में पहली बार इस यौगिक को अबास अलावी द्वारा दो साधारण मानव स्वयंसेवकों पर आजमाया गया। एक साधारण (गैर PET) परमाणु स्कैनर के साथ ली गई मस्तिष्क छवियों में उस अंग में FDG के संकेन्द्रन का प्रदर्शन किया गया। बाद में, आधुनिक प्रक्रिया को उत्पन्न करने के लिए इस पदार्थ का इस्तेमाल समर्पित पॉज़िट्रॉन टोमोग्राफिक स्कैनर में किया गया।

PET/CT स्कैनर जिसका श्रेय डॉ॰ डेविड टाउनसेंड और डॉ॰ नट को दिया गया, TIME पत्रिका के द्वारा वर्ष 2000 में वर्ष के चिकित्सा आविष्कार के रूप में नामित किया गया।

अनुप्रयोग

एक एफ 18-FDG सम्पूर्ण शरीर PET अधिग्रहण की अधिकतम तीव्रता प्रक्षेपण (MIP), पेट के क्षेत्र में असामान्य केन्द्रीय उभार को दिखाता हुआ। सामान्य शारीरिक आइसोटोप उभार मस्तिष्क, गुर्दा संबंधी संग्रह प्रणालियों और मूत्राशय में देखा जाता है। इस एनीमेशन में, यह देखना आवश्यक है कि वस्तु दक्षिणावर्त घूमता है (जिगर की स्थिति को देखें).

PET चिकित्सा और अनुसंधान दोनों उपकरण है। कर्करोग विज्ञान चिकित्सा में इसका इस्तेमाल भारी रूप से किया जाता है (ट्यूमर की चिकित्सा इमेजिंग और मेटास्टेसेस के लिए खोज) और उस प्रकार के कुछ मस्तिष्क रोग जैसे जो कई प्रकार के पागलपन का कारण होते हैं, के लिए नैदानिक उपचार होता है। PET एक महत्वपूर्ण अनुसंधान उपकरण भी है जिससे सामान्य मानव मस्तिष्क और हृदय कार्य की जांच की जाती है।

पूर्व नैदानिक अध्ययन में जानवरों का प्रयोग करते हुए PET का भी इस्तेमाल किया जाता है, जहां यह एक ही विषय में जांच को दोहराने की अनुमति देता है। यह विशेष रूप से कैंसर अनुसंधान में महत्वपूर्ण है, क्योंकि इसका डाटा के सांख्यिकीय गुणवत्ता में वृद्धि के रूप में परिणाम होता है (विषयों अपने स्वयं के नियंत्रण के रूप में कार्य कर सकते हैं) और अध्ययन के लिए काफी हद तक पशुओं की आवश्यक संख्या को कम कर देता है।

स्कैनिंग के वैकल्पिक तरीकों में एक्स-रे अभिकलन टोमोग्राफी (CT), चुंबकीय अनुनाद इमेजिंग (MRI), कार्यात्मक चुंबकीय अनुनाद इमेजिंग (fMRI), अल्ट्रासाउंड और एक एकल फोटोन उत्सर्जन अभिकलन टोमोग्राफी (SPECT) शामिल हैं।

जबकि CT और MRI जैसे कुछ इमेजिंग शरीर में जैविक शारीरिक परिवर्तन को पृथक करता है, PET और SPECT आण्विक जीव विज्ञान विवरण के क्षेत्रों का पता लगाने में सक्षम होता है (यहां तक कि शारीरिक परिवर्तन से पहले) PET स्कैनिंग, रेडियोलेबल आणविक जांच के इस्तेमाल से ऐसा करता है जसमें, शामिल ऊतक के प्रकार और क्रिया के आधार पर उद्ग्रहण का विभिन्न दर होता है। विभिन्न शारीरिक संरचनाओं में स्थानीय रक्त प्रवाह के परिवर्तन (अंतःक्षेपित पॉजिट्रोन उत्सर्जक के माप के रूप में) को कल्पित किया जा सकता है और एक PET स्कैंन के साथ अपेक्षाकृत मात्रा निर्धारित किया जा सकता है।

PET इमेजिंग एक समर्पित PET स्कैनर के इस्तेमाल से सबसे अच्छा प्रदर्शन करता है। हालांकि, यह संभव है कि संयोग डिटेक्टर के साथ परम्परागत दोहरे सिर वाले गामा कैमरा के इस्तेमाल से PET छवियां प्राप्त किया जा सकता है। गामा कैमरा PET की गुणवत्ता काफी कम है और अधिग्रहण धीमा है। हालांकि, PET के लिए कम मांग के साथ संस्थानों के लिए, रोगियों को अन्य सेंटर में रेफर करने या एक मोबाइल स्कैनर द्वारा एक निरीक्षण पर भरोसा करने की बजाए यह साइट पर इमेजिंग की अनुमति दे सकते हैं,.

PET कुछ बीमारियों और विकारों के लिए एक महत्वपूर्ण तकनीक है, क्योंकि विशेष शारीरिक कार्यों के लिए रेडियो रासायनों का इस्तेमाल करने का लक्ष्य संभव है।

  1. कर्क विज्ञान: खोजी फ्लुराइन-18 (F-18) फ्लुरोडियोक्सीग्लुकोज (FDG) के साथ PET स्कैनिंग FDG-PET कहा जाता है, जिसका नैदानिक कर्क विज्ञान में वृहत रूप से इस्तेमाल होता है। इस अनुरेखक एक ग्लूकोज अनालॉग है जिसे ग्लुकोज इस्तेमाल कोशिका और हेक्सोकिनेज द्वारा फोसफेरीलेटेड द्वारा उपर लिया जाता है (जिसका मिटोशोनड्रियाल रूप तेजी से बढ़ने वाले घातक ट्यूमर में तेजी से उन्नत होता है)। एक कर्क विज्ञान स्कैन में FDG का एक विशिष्ट खुराक का प्रयोग किया जाता है जो कि एक वयस्क के लिए 200-400 MBq है। क्योंकि ऑक्सीजन परमाणु है जो कि 18-एफ द्वारा FDG उत्पन्न करने के लिए प्रतिस्थापित होता है और सभी कोशिकाओं में ग्लूकोज चयापचय के अगले कदम के लिए आवश्यक होता है, इसमें आगे FDG में कोई प्रतिक्रिया नहीं होते हैं। इसके अलावा, अधिकांश ऊतक (उल्लेखनीय लीवर और गुर्दे के अपवाद के साथ) हेक्सोकिनेज द्वारा जोड़े गए फॉस्फेट को हटा नहीं सकता. इसका अर्थ है कि FDG किसी कोशिका में इसके अपक्षय होने तक फंस जाता है और जो कि इसे उपर तक ले आता है, इसके आयोनी चार्ज के कारण फोसफोरिलेटेड शक्कर कोशिका से बाहर निकल नहीं सकता. मस्तिष्क, लीवर और अधिकांश कैंसर जैसे उच्च ग्लूकोज उद्ग्रहण के साथ ऊतकों के तीव्र रेडियोलेबलिंग में इसका परिणाम होता है। परिणाम के रूप में FDG-PET का इस्तेमाल निदान, चरणबद्धता और कैंसर के उपचार की निगरानी के लिए किया जा सकता है विशेष तौर पर हॉजकिन के लिंफोमा, गैर-हॉजकिन लिंफोमा और फेफड़ों का कैंसर के लिए। कई अन्य प्रकार के ठोस ट्यूमर को मामले-दर-मामले के आधार पर काफी उच्च लेबलकृत पाया जाएगा - एक तथ्य जो कि ट्यूमर मेटास्टेसिस के खोज के लिए, या ज्ञात उच्च सक्रीय प्राथमिक ट्यूमर को हटाने के बाद आवर्तन के लिए यह विशेष तौर पर उपयोगी बन गया है। क्योंकि अभिकलन टोमोग्राफी के साथ पारम्परिक इमेजिंग (CT) और चुंबकीय अनुनाद इमेजिंग (MRI) की तुलना में व्यक्तिगत PET स्कैन महंगे होते हैं, लागत विवश स्वास्थ्य सेवाओं में FDG-PET का विस्तार प्रौद्योगिकी आकलन स्वास्थ्य पर निर्भर करेगा; यह समस्या काफी जटिल है क्योंकि संरचनात्मक और कार्यात्मक इमेजिंग का अक्सर सीधे तुलना नहीं किया जा सकता चूंकि वे अलग जानकारी देते हैं। ऑन्कोलॉजी स्कैन FDG का इस्तेमाल करती है जो कि चालू व्यवहार के स्कैन में सभी PET के 90% से अधिक का उपयोग करता है।
  2. मानव मस्तिष्क का PET स्कैन.
    तंत्रिकाविज्ञान: PET न्यूरोइमेजिंग गतिविधि इस धारणा पर आधारित है कि उच्च रेडियोधर्मिता के क्षेत्र मस्तिष्क की गतिविधि से जुड़े हैं। वास्तव में जो मापा जाता है वह परोक्ष रूप से मस्तिष्क के विभिन्न भागों में प्रवाहित रक्त है, जिसे आम तौर पर सहसंबद्ध माना जाता है और इसे अनुरेखक ऑक्सीजन-15 के इस्तेमाल से मापा जाता रहा है। हालांकि, 2 मिनट के अर्ध-जीवन के कारण O-15 को ऐसे इस्तेमाल के लिए चिकित्सकीय साइक्लोट्रोन से डाला जाना चाहिए और यह मुश्किल है। अभ्यास में, चूंकि मस्तिष्क सामान्य रूप से ग्लूकोज का तीव्र उपयोगकर्ता है और चूंकि मस्तिष्क विकृतियां जैसे अल्जाइमर रोग, ग्लूकोज और ओक्सिजन, दोनों के मस्तिष्क चयापचय को एक साथ अत्यंत कम कर देता है, मस्तिष्क का मानक FDG -PET, जो स्थानीय ग्लूकोज़ उपयोग का मापन करता है, उसका इस्तेमाल अल्जाइमर रोग को अन्य मनोनाश प्रक्रियाओं से अलग करने में सफलतापूर्वक किया जा सकता है और अल्जाइमर रोग के प्रारंभिक निदान के लिए भी. इन उपयोगों के लिए FDG-PET का लाभ इसकी व्यापक उपलब्धता है। FDG के साथ Pet इमेजिंग का इस्तेमाल सीज़र फोकस के स्थानीयकरण के लिए किया जा सकता है: एक सीज़र फोकस, इंटरिक्टल स्कैन के दौरान एक हाइपोमेटाबोलिक के रूप में दिखाई देगा। ऐसे कई रेडियोअनुरेखक (यानी रेडियोलिगेंड) को PET के लिए विकसित किया गया है जो विशेष न्यूरोसेप्टर के उपप्रकार के लिए लिगेंड हैं जैसे [11C] रेक्लोप्राइड और डोपामिन D2/D3 रिसेप्टर के लिए [18F] फैलीप्राइड, सेरोटोनिन ट्रांसपोर्टर के लिए [11C]McN 5652 और [11C]DASB या एंजाइम सबस्ट्रेट (जैसे AADC एंजाइम के लिए 6-FDOPA)। ये एजेंट, न्यूरोरिसेप्टर पूल को तंत्रिका-मनोरोगीय और तंत्रिका सम्बन्धी बीमारियों की अधिकता के संदर्भ में देखने की अनुमति देते हैं। पिट्सबर्ग विश्वविद्यालय में PIB (पिट्सबर्ग कम्पाउंड B) नाम से विकसित एक नवीन जांच, अल्जाइमर रोगियों के दिमाग में अमिलोइड प्लेक को देखने की अनुमति देती है। यह प्रौद्योगिकी AD प्री-मोर्टेम के एक सकारात्मक नैदानिक निदान करने में और अमिलोइड-विरोधी नवीन उपचारों के विकास में चिकित्सकों की सहायता कर सकती है। [11C]PMP (N-[11C] मेथाइलपाइपरिडीन-4-yl प्रोपिओनेट) एक नवीन रेडियोदवा है जिसका इस्तेमाल PET इमेजिंग में एसिटिलकोलिनार्जिक न्यूरोट्रांसमीटर प्रणाली की गतिविधि निर्धारित करने के लिए होता है जिसके लिए यह एसिटिलकोलिनेस्टरेज़ के लिए सब्सट्रेट के रूप में क्रिया करता है। AD रोगियों के पोस्टमार्टम परीक्षण ने एसिटिलकोलिनेस्टरेज़ के घटित स्तर को दिखाया है। [11C] PMP का इस्तेमाल मस्तिष्क में एसिटिलकोलिनेस्टरेज़ की गतिविधि के मापन के लिए किया जाता है जो AD के प्री-मार्टम निदान की अनुमति दे सकता है और AD उपचार की निगरानी रखने में मदद कर सकता है।फिलाडेल्फिया के एविड रेडियोफार्मास्युटिकल्स ने एक ऐसा यौगिक तैयार किया है जिसे 18F-AV-45 कहा जाता है जो PET स्कैन का इस्तेमाल करते हुए अमिलोइड प्लेक का पता लगाने के लिए लंबे समय तक चलने वाले रेडियोन्युक्लिआइड फ्लोरीन-18 का उपयोग करता है।
  3. हृदयरोगविज्ञान, अथेरोसेलेरोसिस और संवहनी रोग अध्ययन: नैदानिक हृदयरोगविज्ञान में, FDG-PET तथाकथित '"सुप्तावस्था वाले मिओकार्डिअम की पहचान कर सकते हैं, लेकिन इस भूमिका में इसकी लागत-प्रभावशीलता बनाम SPECT स्पष्ट नहीं है। हाल ही में, स्ट्रोक के खतरे वाले रोगियों का पता लगाने के लिए अथेरोसेलेरोसिस के FDG-PET इमेजिंग की एक भूमिका का सुझाव दिया गया है [3].
  4. तंत्रिकामनोविज्ञान / संज्ञानात्मक तंत्रिकाविज्ञान: विशिष्ट मानसिक प्रक्रियाओं या विकारों और मस्तिष्क गतिविधि के बीच संबंधों की जांच करने के लिए।
  5. मनश्चिकित्सा: कई यौगिकों को C-11 या F-18 से रेडियोलेबल किया गया है जो जैविक मनोरोग में रूचि वाले न्यूरोरिसेप्टर के साथ चुनिंदा तरीके से आबद्ध होते हैं। रेडियोलिगेंड जो डोपामिन रिसेप्टर (D1, D2, पुनर्ग्रहण ट्रांसपोर्टर), सेरोटोनिन रिसेप्टर (5HT1A, 5HT2A, पुनर्ग्रहण ट्रांसपोर्टर), ओपिओइड रिसेप्टर (mu) और अन्य साइटों से बंधन बनाते हैं, उनका मानवों पर किये गए अध्ययन में सफलतापूर्वक इस्तेमाल किया गया है। रोगियों में इन रिसेप्टर की स्थिति की जांच करते हुए अध्ययन किये गए हैं जिसकी तुलना पागलपन, मादक द्रव्यों के सेवन, मानसिक विकार और अन्य मनोरोगों से की गई है।
  6. भेषजविज्ञान: पूर्व नैदानिक परीक्षण में, एक नई दावा को रेडियोलेबल देना और उसे जानवरों को देना संभव है। ऐसे स्कैन को जैववितरण अध्ययन के रूप में संदर्भित किया जाता है। दवा का सेवन, ऊतक जिसमें वह संकेंद्रित होती है और उसका अंतिम उन्मूलन, सभी पर कहीं अधिक तेज़ी से और किफायती रूप से नज़र रखी जा सकती है, उस पुरानी तकनीक की तुलना में जिसमें इसी जानकारी को हासिल करने के लिए जानवर की हत्या और चीर-फाड़ की जाती थी। अधिक सामान्यतः, कार्रवाई के एक इच्छित स्थान पर दवा के अधिभोग को, लेबल-रहित दवा और रेडियोलेबल यौगिकों के बीच प्रतियोगी अध्ययन द्वारा अप्रत्यक्ष रूप से अनुमानित किया जा सकता है, जो साईट से विशिष्टता के साथ निगमनिक रूप से बंद्धन करने के लिए जाना जाता है। एक एकल रेडियोलिगेंड को इस तरह एक ही लक्ष्य के लिए दवा के कई संभावित उम्मीदवारों के परीक्षण के लिए इस्तेमाल किया जा सकता है। एक संबंधित तकनीक है रेडियोलिगेंड के साथ स्कैनिंग जो एक दिए गए रिसेप्टर पर एक अंतर्जात (स्वाभाविक रूप से होने वाली) पदार्थ के साथ प्रतिस्पर्धा करता है, यह दिखाने के लिए एक दवा, प्राकृतिक पदार्थ के जारी होने का कारण बनती है।
  7. छोटे पशु इमेजिंग के लिए PET प्रौद्योगिकी: एक ऐसे लघु PET टोमोग्राफ़ का निर्माण किया गया है जो इतना छोटा है कि एक पूर्ण सचेत और गतिशील चूहे द्वारा अपने सिर पर पहना जा सकता है। यह रैटकैप (RatCAP) (रैट कॉन्शस ऐनिमल PET), संज्ञाहरण के चकराने वाले प्रभाव के बिना ही पशुओं को स्कैन करने की अनुमति देता है। PET स्कैनर जिन्हें विशेष रूप से मूषक जाती के पशुओं या छोटे वानर की इमेजिंग के लिए डिजाइन किया गया है, उनका विपणन शैक्षिक और दवा अनुसंधान के लिए किया जाता है।

पल्स आकार विभेदन

पल्स आकार विभेदन (PSD) एक ऐसी तकनीक है जिसका इस्तेमाल यह पता लगाने के लिए किया जाता है कि कौन सी नाड़ी प्रत्येक क्रिस्टल से संबंधित है। आकार के अनुसार दो प्रकार की नाड़ी के बीच विभेदन करने के लिए विभिन्न तकनीकों को पेश किया गया (वास्तव में क्षय समय के कारण)।

सुरक्षा

PET स्कैन गैर-आक्रामक है, लेकिन इसमें आयोनियाई विकिरण के लिए अनावरण शामिल है। विकिरण का कुल खुराक निरर्थक नहीं है, आमतौर पर 5–7 mSv होती है। लेकिन, आधुनिक अभ्यास में एक संयुक्त PET/CT स्कैन का प्रयोग लगभग हमेशा होता है और PET/CT स्कैनिंग, विकिरण प्रभाव पर्याप्त हो सकता है - लगभग 23-26 mSv (एक 70 किलो व्यक्ति के लिए - अधिक किलो के शरीर के लिए खुराक के अधिक होने की संभावना होती है)। जब 6 mSv के ब्रिटेन के विकिरण मजदूरों के वर्गीकरण स्तर के साथ तुलना की जाए तो यह देखा जा सकता है कि PET स्कैन के लिए उचित औचित्य की आवश्यकता होती है। ब्रिटेन में इसकी तुलना 2.2 mSv औसत वार्षिक पृष्ठभूमि विकिरण से भी की जा सकती है, चेस्ट जर्नल और ICRP के अनुसार सीने के एक्स-रे के लिए 0.02 mSv और सीने का CT स्कैन के लिए 6.5 - 8 mSv होता है। वर्ष 1999 में IFALPA सदस्य संघों द्वारा एक नीतिगत परिवर्तन को सुझाया गया जिसमें एक हवाईकर्मी सदस्य के प्रति वर्ष 4–9 mSv का विकिरण खुराक प्राप्त करने की संभावना है।

इन्हें भी देखें

अतिरिक्त पठन

बाहरी कड़ियाँ

साँचा:Nuclear Technology

ब्लॉक उद्धरण


Новое сообщение